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Abstract 6 

The initial theoretical connections between Leontief input-output models and Markov 7 

chains were established back in 1950s. However, considering the wide variety of 8 

mathematical properties of Markov chains, so far there has not been a full 9 

investigation of evolving world economic networks with Markov chain formalism. In 10 

this work, using the recently available world input-output database, we investigated 11 

the evolution of the world economic network from 1995 to 2011 through analysis of a 12 

time series of finite Markov chains. We assessed different aspects of this evolving 13 

system via different known properties of the Markov chains such as mixing time, 14 

Kemeny constant, steady state probabilities and perturbation analysis of the transition 15 

matrices. 16 

First, we showed how the time series of mixing times and Kemeny constants could be 17 

used as an aggregate index of globalization. 18 

Next, we focused on the steady state probabilities as a measure of structural power of 19 

the economies that are comparable to GDP shares of economies as the traditional 20 

index of economies welfare.  21 

Further, we introduced two measures of systemic risk, called systemic influence and 22 

systemic fragility, where the former is the ratio of number of influenced nodes to the 23 

total number of nodes, caused by a shock in the activity of a node and the latter is 24 

based on the number of times a specific economic node is affected by a shock in the 25 

activity of any of the other nodes.  26 

Finally, focusing on Kemeny constant as a global indicator of monetary flow across 27 

the network, we showed that there is a paradoxical effect of a change in activity levels 28 

of economic nodes on the overall flow of the world economic network. While the 29 

economic slowdown of the majority of nodes with high structural power results to a 30 
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slower average monetary flow over the network, there are some nodes, where their 31 

slowdowns improve the overall quality of the network in terms of connectivity and the 32 

average flow of the money. 33 

 34 

Introduction 35 

The mathematical beauty of computational algebraic methods such as Markov chains 36 

is that they are domain free. This means that having a proper size of observed data and 37 

enough computational power they fit very well into many application domains, while 38 

unlike many domain specific models, they do not ask for domain specific prior-39 

knowledge. For example, they assume that the rules of interactions among agents 40 

(being economic agents or drivers in a transportation network or words in a spoken 41 

language), are embedded in the traces of their real interactions, while in traditional 42 

rule based or agent based simulations, one needs to specify features and the rules of 43 

interactions among those agents beforehand. On the other hand, algebraic methods are 44 

data demanding and because of this, Markov chains for example that were introduced 45 

in 1906 [1], did not get that much of attention before the advent of computers in 1950s 46 

and finally in the late 1990s, Markov chains were applied in large scale problems such 47 

as in PageRank algorithm in Google search engine [2]. In principle, the same 48 

argument holds for the recently successful field of “representation learning” or the 49 

so-called “deep learning”, where having large amount of data set along with a series 50 

of stacked algebraic operators one can come up with highly sophisticated hierarchical 51 

representations of complex phenomena [3].  52 

In this work our focus is on Markov chains and their applications on evolving 53 

economic networks. A Markov chain is a data driven formalism to its underlying 54 
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dynamical system, where we only need some real observations and usually no prior 55 

rules of interactions among the agents or the states of that system. Nevertheless, with 56 

this formalism one can benefit from the many interesting mathematical properties of 57 

Markov chains such as their steady state probability distribution [4], Kemeny constant 58 

[5], recurrence time and mixing time [6], mean first passage times [7] and the 59 

sensitivity analysis of the underlying networks through perturbation of the transition 60 

matrix [8-10]. Of course, one should be very careful with the prior assumptions in a 61 

Markov chain such as its structuralist view to the problem, the issues of memory, the 62 

linearity of the operator, the assumptions about closed-ness of the state space in 63 

discrete chains, etc. 64 

In the domain of economic and financial applications, especially after the financial 65 

crisis of 2008, the notions of networked economy, complexity and systemic risk are 66 

gaining increasing importance [11-16]. Comparing to classical economic models, 67 

which are mainly based on the assumptions of independent agents, network based 68 

economics is focused on the interaction between agents.  69 

Nevertheless, networks are not new topics in economics. For example, one can refer 70 

to the works of Leontief on the so-called, input-output tables [17] within 1940s, for 71 

which he won a Nobel Prize in economics. An input-output table in fact is a network, 72 

where nodes are the segments of an economy (i.e. different industries within a 73 

country) and the edges are the monetary flows of goods within these nodes. Input-74 

output tables can be seen as a system of equations where the solution (if exists) is 75 

considered as the equilibrium price of products in order to keep the economic network 76 

stable.   77 

Related to the our work, Solow in 1952 [18] discussed the connections between 78 

Leontief input-output models and Markov chain formalism, where he investigated the 79 
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required conditions for finding a stable solution (i.e. balanced prices) for the 80 

underlying system of equations. Further, the authors in [19] modeled input-output 81 

models as absorbing Markov chains based on either the flow of materials or the flow 82 

of money. 83 

In this work, based on the recently available data set, called World-Input-Output-84 

Database (WIOD) [20], we investigate several other properties of Markov chains on a 85 

time varying global economic network.  86 

In the next section, we briefly describe the data set we used in this work. Next, we 87 

describe the proposed Markovian model and those properties we applied to analyze 88 

the global economic network. Finally, we show the results and discuss the potential 89 

future directions.  90 

Materials and methods 91 

World input output network 92 

The World-Input-Output-Database (WIOD) represents a network of two types of 93 

nodes. The first type of node, 𝐼, corresponds to a specific industrial sector within an 94 

economy. Each industry, based on some inputs from other industries, produces some 95 

products and sells them to other intermediate industries and final consumers that are 96 

call households and the governments. These households, together with the 97 

government of each economy, represent an additional kind of node, 𝐺. This node 98 

participates in the money flow through the network by consumption of final products, 99 

and by receiving money consisting of taxes and value added coming from the 100 

corresponding industries working in that economy. This process can be visualized in a 101 

weighted digraph structure, where an industrial sector 𝑗of a specific economy 𝑖 is 102 
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defined as 𝐸!𝐼!. Further, we assign one node for the governments and households 103 

within each economy that from now on we refer to by 𝐸!𝐺. In this manner, each input 104 

output table is represented as a closed system, which makes it suitable for Markov 105 

Chain formalism. 106 

Fig 1 shows a schematic view of a closed network with two economies, each with one 107 

unique industry and one node representing the government and the households 108 

together. As it is shown in this figure, in WIOD data set, due to aggregation of flows 109 

within industries, there are explicit self-loops for industry nodes. Further, from now 110 

on we assume that the edges are representing the flow of money. As we will show 111 

later, it is also possible to easily aggregate the flows over each economy in order to 112 

come up with the measures at the level of economies.  113 

 114 

Fig 1. A schematic view of a closed economic network 115 

There are two economies and one industry within each economy, and one node for the 116 

government and households within each economy. The edges represent the flow of 117 

money between nodes. 118 

 119 
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 120 

In the WIOD that we used in this study, there are 35 industries within 41 economies 121 

(27 EU countries and 13 major economies in other regions) plus the rest of the world 122 

(RoW) as one economy. A complete list of industries and economies can be found in 123 

[20]. Considering the 35 industries within each economy plus one node for each 124 

government and households (together in one node), there are 1476 nodes for each 125 

year. While the flows (i.e. the edges and their values) change from year to year, the 126 

same structure repeats for 17 years from 1995 to 2011, which makes it suitable for 127 

trend analysis. WIOD is a valuable data set that has been used in several recent 128 

studies, including identification of global value chains and trade fragmentation 129 

[21,22] and global environmental accounting in ecology and resources management 130 

[23]. From a network analytics point of view recently there has been a work on this 131 

data set, where several network based measures such as different centrality measures 132 

and clustering measures of the world economic network have been studied [24]. In 133 

this work we applied several properties of Markov chains on this time varying 134 

network.  135 

The proposed Markovian model of the world economic 136 

network 137 

As mentioned before, the formalism of Input Output (IO) models by Markov chain 138 

has an old history back to 1952 [18] and more recently to [19] who modeled an open 139 

IO models as absorbing Markov chains. In this work, a closed IO network is studied, 140 

which can be translated naturally to a regular Markov chain with no absorbing states. 141 

More explicitly, an IO table of a specific year in the WIOD is an asymmetric non-142 

negative squared matrix 𝑊whose elements 𝑤!" correspond to the flow of money from 143 
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a node 𝑗 to a node 𝑖.  A stochastic matrix 𝑇can be directly associated to 𝑊 by column 144 

normalization, thus a specific element 𝑡!" of 𝑇 is defined by: 145 

𝒕𝒊𝒋 =
𝒘𝒊𝒋
𝒘𝒊𝒋𝒊

                    (1) 146 

The elements 𝑡!"can be interpreted either as the relative flow of money between nodes 147 

or as the probability for a random walker to move from one node to another. Since 148 

there is only one table per year, these probabilities are the annual average values. As a 149 

result, for each year, we assume a single discrete time-homogeneous Markov chain 150 

model with a corresponding stochastic matrix 𝑇! with 𝑦 ∈ 1995,… ,2011 .  151 

Our interest in this work is mainly on the dynamics of the world economic network 152 

over time, where the 𝑇! matrices are changing for each year. Therefore, we are facing 153 

a time inhomogeneous Markov chain. However for every year 𝑦 the stochastic matrix 154 

is well defined and its properties can be used to characterize the global economic 155 

network and follow its evolution through 17 years. In particular three specific 156 

properties have been chosen: 157 

Steady State Vector: is the first eigenvector of 𝑇defined by: 158 

𝝅 = 𝑻𝝅          (2) 159 

One can easily estimate this vector using power iteration method, starting with any 160 

initial random vector. This vector is sometimes called Eigenvector centrality, however 161 

this terminology has not been used in this work. In our case, 𝜋 is a normalized one-162 

dimensional vector with the same size as the number of nodes in the global economic 163 

network (i.e. 1476 nodes). Its values can be interpreted as the expected long-term 164 

relative amount of money within each government or each industry. As we will see 165 

later, while it is common in network studies to use centrality measures for ranking of 166 
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the nodes (e.g. PageRank algorithm [2]), here these values are highly comparable to 167 

annual GDP shares of the economic nodes. It is important to note that since the 168 

underlying dynamical system in our global economic network cannot be explained 169 

with one fixed transition matrix, one cannot claim that the global economic network 170 

reaches the steady state within the scope of one year. But at the same time, taking 171 

stationary probabilities as a kind of structural property of each node, the comparisons 172 

of their values over time reveals interesting features of this evolving global economic 173 

network.  174 

Mixing time: It can be measured as the average number of steps that a Markov chain 175 

takes from any random initial state in order to reach its steady state [6]. Mixing time is 176 

a very good global measure, which shows how connected the network is. In principle, 177 

if a chain has more local loops or disconnected regions that is difficult to enter or 178 

leave, mixing time will be longer. In the context of global economic network this can 179 

be considered as an index of globalization, where higher values of mixing times 180 

shows less connected network and vice versa. In this work, the mixing time of each 181 

year’s transition matrix is calculated through the average number of iterations in the 182 

power iteration method. 183 

Kemeny constant: Similar to mixing time, this is another global measure of the 184 

Markov chains, which shows the average expected time from any given state (node) 185 

to a random state (node). Interestingly, this value is constant over different states of a 186 

given Markov chain and therefore it can be considered as an intrinsic feature of a 187 

chain. Similar to mixing time, this constant can be a good indicator of the connectivity 188 

of the underlying network. Therefore, as a hypothesis we expect that corresponding 189 

Kemeny constants of different Markov chains for different years should form a 190 

decreasing pattern over time, which indicates a faster flow of money and more 191 
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development of the global economic network within the years 1995 to 2011. Along 192 

the same line, there is another interesting property of Markov chains, called Mean 193 

First Passage Time (MFPT) [7], which indicates the expected time for a Markov chain 194 

to transit from specific node to another specific node. In the context of economic 195 

networks, this measure can be used to analyze the inter-relationships between two 196 

specific industries within or across a value chain. However, we did not use this 197 

measure in this work.   198 

Calculation of Kemeny constant of a each Markov chain is very straight forward. As 199 

shown in [5], the eigenvalues 𝝀𝟐, . . . ,𝝀𝒏of 𝑻other than 1 can be used to compute the 200 

Kemeny constant as follows: 201 

𝑲 𝑻 = 𝟏 + 𝟏
𝟏!𝝀𝒊

𝒏
𝒊!𝟐          (3) 202 

Sensitivity analysis of transition matrices 203 

By perturbing the values of the transition matrices, one can analyze the effect of each 204 

node on the other nodes. There are many different approaches for perturbation 205 

analysis of Markov chains within the literature such as [8-10]. A common way for 206 

perturbation analysis is to change the transition probabilities by small random noises, 207 

while the sum of these noises is equal to zero. In this way the transition matrix will 208 

remain stochastic.  209 

However in this work, since we are ultimately interested in defining risk measures 210 

attributed to individual economic nodes, we choose a different procedure of 211 

perturbation, repeated for all the nodes. As described in [10], we analyze the effect of 212 

slowing down the activity level of one specific economic node on all the other nodes 213 

by the following procedure.  214 
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If we want to change the activity of one node by 𝛼 percent we multiply all the outflow 215 

and inflow rates of that node by 1+ 𝛼 100 and then we normalize all the affected 216 

columns. After this change, we have a new transition matrix.   217 

One interesting property of Markov chain is that since it is a linear operator, if we 218 

increase (decrease) the rates of a node by 𝛼 percent, based on the described procedure, 219 

after calculating the new steady state probabilities, the new value of that node will 220 

increase (decrease) by 𝛼 percent. Further, since we assume a closed system, then we 221 

have a zero sum game. This means that a decrease (increase) in the 𝜋! will result to 222 

decrease or increase of 𝜋! for 𝑗 ≠ 𝑖 such that 𝜋!!
!!! = 1.  223 

It is important to mention that there is a pre-assumption in this manipulation of the 224 

original transition matrix that by slowing down the activity of a node, all of its 225 

connected industries redistribute their slack resources to other activities proportionally 226 

to the their flow rates. Therefore, here we assume that there is no limit in resources 227 

and production capacities or any limits on the absolute flow levels of money 228 

(commodity) over the edges of the network.  229 

In the perturbation process, there might be nodes (assumingly with not a large 230 

structural power) that have effects on many other nodes. Thus instead of considering 231 

the total values of these effects, by focusing on the number of nodes that are being 232 

affected by the change in the activity of one node, we introduce the two following 233 

measures. 234 

Systemic Influence, which is a measure for each economic node, calculated as the ratio 235 

of number of affected nodes (negatively or positively) to the total number of nodes, 236 

caused by a change in the activity of that node. 237 
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Systemic Fragility, which is a measure for each economic node, calculated as the ratio 238 

of number of times a node is affected (negatively or positively) by a change in the 239 

activity of all the other nodes. 240 

Another possible sensitivity analysis is to consider the effect of each node on a global 241 

measure of the economic network such as Kemeny constant. This type of analysis 242 

sometimes leads to unexpected results, where by removing important nodes (in terms 243 

of steady state probabilities) the total flow of the network will improve and vice versa 244 

[10]. In the next section we will present the results of applying the above-mentioned 245 

analyses in to the evolving global economic network. 246 

Results 247 

In this section, based on the previously described properties of the Markov chains we 248 

show the results of our experiments on the WIOD data set. 249 

The overall patterns of globalization  250 

In this part, we focus on the global features of the underlying network by showing the 251 

results of mixing times and Kemeny constants for the years from 1995 to 2011. Fig 2 252 

shows the sequence of mixing times for the corresponding Markov chains of each 253 

year.  We run these iterations several times with the same threshold of termination for 254 

all the years and we observed that the mixing times are stable in different runs. This 255 

can be seen in the very small error bars around the average values of each year. As we 256 

expected the mixing time series has an overall downward pattern from 1995 to 2011, 257 

which indicates that during these years the underlying TMs and consequently the 258 

world economic network was getting more and more interconnected. Therefore, one 259 

could interpret this feature as an index of globalization. Further, as it is shown in Fig 260 

2, this index reflects the effect of global financial crisis in 2008, which results to a 261 
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jump in the mixing time in 2009. This implies that the world economic network was 262 

less connected in 2009 comparing to 2008. A similar pattern can be seen from 1997 263 

to1999, where we could not argue its underlying reason. Nevertheless, the overall 264 

pattern shows a rapid globalization during 1995 to 2011, which seemingly will 265 

continue for the next coming years. 266 

 267 

Fig 2. The sequence of average mixing time of Markov chains as an aggregate 268 

index of globalization 269 

Lower values indicate more globally connected network. The error bars represent  3 270 

standard deviations. 271 

 272 

 273 

Similar to mixing times we expected that the Kemeny constant series to show a 274 

downward pattern. As presented in [5], we calculated the Kemeny constant of each 275 

Markov chain based on the Eigenvalue decomposition of the corresponding matrices. 276 

Fig 3 shows that although Kemeny constants have the same overall pattern as the time 277 

series of mixing times, including the shock in 2008 and 2009, there is an upward 278 

pattern in the values of Kemeny constants within the years 2000 to 2004. As a 279 
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reminder, we should note that Kemeny constant indicates the average time from any 280 

given state (here any industry within any economy) to any random state in the 281 

network, where surprisingly this average time is constant independent of the starting 282 

point. However, when there is a local loop within the network this average time will 283 

increase. In the context of economic network, this might mean that within the years of 284 

2000 to 2004, there might have been a creation or reinforcement of some local loops 285 

in the global economic network.  Nevertheless, Kemeny constant is an aggregated and 286 

emergent measure of the underlying dynamics and one needs specific investigations in 287 

order to find out the underlying reasons for these macro behaviors.  288 

 289 

Fig 3. The sequence of Kemeny constants of Markov chains as an aggregate 290 

index of globalization 291 

Lower values indicate more globally connected networks. 292 

 293 

In the next section, we focus on the analysis of steady state probability distributions 294 

for different years. 295 
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Steady state probabilities as a measure of structural power 296 

of economies 297 

In a stochastic transition matrix, the first Eigenvector, 𝜋, shows the steady state 298 

probabilities of the underlying dynamical system. As described in the previous 299 

section, this can be calculated easily using power iteration method. However, as we 300 

discussed before, since we have one unique Markov chain for each year, we cannot 301 

claim that the underlying economic system reaches to its steady state within each 302 

year. However, the steady state vectors of each year can be interpreted as the 303 

structural power of each node in the economic network and since the structure of the 304 

network (i.e. the number of nodes in the global economic network) is fixed, 305 

comparing the time series of 𝜋!
! for each node 𝑖 at year 𝑦 reveals interesting results. 306 

Further, one can easily calculate different aggregated measures by summing up these 307 

steady state values over different categories such as industries or economies. As we 308 

will show there is a direct relation between the aggregated values of each economy, 309 

called 𝜋!
! and its GDP share at the same time. In principle, GDP as a measure of 310 

economy’s welfare considers one economy in an isolated set up, while the steady state 311 

probabilities are being calculated based on the relationships between all the economic 312 

nodes. Therefore, looking at economies in isolation might reveal different results than 313 

considering the developments in other economies at the same time. Recently, in this 314 

direction there have been interesting works such as [11,15,16] that came up with 315 

measures of economic fitness of countries that are fundamentally relational and 316 

consequently reveal different features than classical GDP measures.  317 

Fig 4 compares two time series of GDP shares of economies with the time series of 318 

𝜋!
!. Each individual plot corresponds to one aggregated economy (industries plus 319 
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households/government), where the x-axis is the year and y-axis is for the GDP shares 320 

(red line) and 𝜋! values of each economy (blue lines). As we expected, the two time 321 

series are highly correlated. However, the differences between the two time series 322 

indicate an interesting aspect of these economies. We think this difference can be 323 

considered as a measure of economic fitness or the structural potential of the 324 

economies for further growth. As a hypothesis, we think whenever the GDP share is 325 

larger than the aggregated 𝜋! values of the economy, that economy is at risk  (for 326 

example, the red gaps in Cyprus and Greece) and when the gap is blue, this means 327 

that the country has still more potential structural power than what is being produced. 328 

An interesting feature of this ratio is that it does not correlate with the overall patterns 329 

of the economy in time. For example, while Germany and Japan are loosing their 330 

global competitiveness (with downward patterns), still they are not in a risky area (the 331 

blue gap). On the other hand, while India and Turkey for example are gaining more 332 

competitive powers (with upward patterns), both are at the same time going to the 333 

risky area (the red gap).     334 
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 335 

Fig 4. GDP shares of economies (red line) compared with their aggregated 336 

structural powers (blue line) over time 337 

The ratio between two time series reveals the structural potential of the economies for 338 

further growth (blue gaps) or the risk of economic failure (red gaps). 339 

 340 

Within the literature of economic complexity there has been always an interest in 341 

predicting the future states of the dynamical systems. Plotting the patterns of the so-342 

called BRIC countries (Brazil, Russia, India and China) together shows an interesting 343 

similarity (Fig 5). It seems that all of these countries have passed a curve shape 344 

behavior and in 2011 they are slowing down, where the GDP share is getting closer to 345 
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the aggregated 𝜋!, hypothetically implying less structural potential for further growth. 346 

The red dashed lines are calculated based on the moving average of the first 347 

momentum of each time series with the time lags between 3 to 6 years. The ticker 348 

dashed line shows the median prediction. 349 

 This result is similar to the results of the recent works published in [16], where the 350 

authors predict the future economic fitness of different economies in comparison to 351 

their GDP per capita.  352 

 353 

Fig 5. Predicted trends of structural potential of different economies 354 

 355 

In the next section, we will focus on the sensitivity analysis of the Markov chains in 356 

order to assess the influence of different nodes on each other and to further, identify 357 

those fragile nodes that get affected by shocks in the network. In addition, we analyze 358 

the effect of slowdown in the economic activities of each individual node on the 359 

overall monetary flow of the world economic network. 360 
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Sensitivity analysis of Markov chains 361 

Since Markov chain provides a formalism of the underlying dynamical system, as 362 

described before, it is then very easy to perform sensitivity analysis by slight changes 363 

in the values of the constructed transition matrix.  364 

In a drastic scenario, Fig 6 shows the effect of 99% slow down in the electrical and 365 

optical equipment industry of China in 1995 and 2011 respectively. As it was 366 

expected, comparing to 1995, a change in this industry in 2011 has enormous negative 367 

and positive effects on the final shares (based on the new 𝜋!vector) of other industries 368 

across the globe. In the depicted diagrams, negative effects are highlighted by red 369 

color and positive effects are shown by green color. The size of green or red circles is 370 

proportional to the primary values in 𝜋! vector of that economic node. For better 371 

visualization purpose, those nodes with less than 1 percent of change in their 372 

corresponding structural power (𝜋!,!) are shown with a small dot. A large orange 373 

circle highlights the perturbed industry. Further, it is important to mention that the 374 

nodes are arranged in a two dimensional space, based on their similarities in exports 375 

related links. This means, closer nodes have similar export patterns. 376 
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 377 

Fig 6. The effect of 99% slowdown of electrical and optical equipment industry 378 

of China 379 

Left side shows the shocked network in 1995 the right side shows 2011. The green 380 

(red) color declares an increase (decrease) in the final share (structural power, 𝝅𝒕,𝒊) of 381 

the node as a result of the slow down in the selected industry. 382 

 383 

 384 

As we mentioned before, by changing 𝛼 percent of the activity of node 𝑖, the total 385 

absolute amount of positive and negative changes (i.e. redistribution of values in new 386 

𝜋!) are equal to 𝛼 percent of 𝜋!,!. Therefore, the global effect of fluctuations in the 387 

activity of each node is the same as the change in its 𝜋!. 388 

Thus instead of focusing on the magnitude of changes, two new measures (Systemic 389 

Influence and Systemic Fragility) that were introduced in the previous section are 390 

based on the multitude of changes, happening as a result of a shock in the network.   391 

In order to calculate these two measures for all the nodes in the network, we 392 

performed the perturbation procedure, which we described before for all the nodes 393 
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with 𝛼 =   −99. Fig 7 shows the distribution of systemic fragility vs. systemic 394 

influence of each node as a result of 99% percent slowdown of each individual node 395 

for the year 2011. We should note that for the calculation of these two measures we 396 

only considered those absolute changes, which are more than 0.5% of the structural 397 

power of the node itself. The size and color of nodes correspond to their structural 398 

powers (i.e. 𝜋! or Eigen Centralities). As it can be seen although all the nodes with 399 

high structural power have relatively high systemic influence, there are nodes with 400 

high systemic influence, but low structural power. For the case of systemic fragility 401 

there is even less correlations to structural power. While nodes with high structural 402 

power are relatively robust (i.e. low fragility), there is a very wide range of fragility 403 

values for those nodes with low structural power.  404 

 405 

Fig 7. Systemic fragility vs. systemic influence of each industry for the year 2011 406 

 407 



22  

Table 1 shows the top 10 economic nodes (except Rest Of World) in 2011 with the 408 

highest systemic influences along with their structural power and systemic fragility. 409 

Table 1. Top 10 nodes with the highest systemic influence in 2011 410 

Rank Names 
Structural 

power 
Systemic Fragility Systemic Influence 

1 China-Government 0.0407637 0.0724932 0.998645 

2 Japan-Real Estate Activities 0.00434353 0.0718157 0.997967 

3 Brazil-Government 0.0106923 0.096206 0.99729 

4 India-Government 0.00788957 0.0792683 0.99729 

5 USA-Government 0.0560428 0.0745257 0.995935 

6 USA-Real Estate Activities 0.00796444 0.0738482 0.995935 

7 Japan-Government 0.0294709 0.0724932 0.995935 

8 USA-Retail Trade, Except of Motor Vehicles 0.0049287 0.0731707 0.995257 

9 USA-Wholesale Trade and Commission Trade 0.00488901 0.0738482 0.99187 

10 USA-Renting of M&Eq and Other Business Activities 0.0116091 0.0718157 0.99187 

 411 

Further, Table 2 shows the top 10 economic nodes in 2011 with the lowest systemic 412 

fragilities. Note that since we are interested in the nodes that can be attributed to a 413 

specific economy we removed those nodes, which were attributed to Rest of the 414 

World (ROW).  415 

Table 2. Top 10 nodes (except rest of the world) with the lowest systemic fragility 416 

in 2011 417 

Rank Names Structural power Systemic Fragility Systemic Influence 

1 UK-Electrical and Optical Equipment 0.000292468 0.054878 0.0826558 

2 Finland-Electrical and Optical Equipment 0.000137664 0.0562331 0.0758808 

3 Taiwan-Manufacturing; Recycling 3.36E-05 0.0569106 0.0223577 

4 Germany-Electrical and Optical Equipment 0.00154004 0.0575881 0.776423 

5 Germany-Chemicals and Chemical Products 0.00110951 0.0575881 0.710027 

6 Ireland-Machinery 1.32E-05 0.0589431 0.0149051 

7 USA-Electrical and Optical Equipment 0.00232597 0.0589431 0.970867 

8 Malta-Electrical and Optical Equipment 6.46E-06 0.0589431 0.0216802 

9 Germany-Machinery 0.00183113 0.0596206 0.719512 
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10 Denmark-Chemicals and Chemical Products 7.48E-05 0.0609756 0.0264228 

 418 

As another possible sensitivity analysis, we assessed the role of each individual 419 

economic node to the overall flow of the economic network. As we discussed before, 420 

Kemeny constant and mixing time are two global measures of a Markov chain, where 421 

the lower values show a more globally connected network and faster flow of money. 422 

In [25], the authors introduce a simple procedure to see the effect of removing each 423 

node on the average flow within a network. In the domain of urban traffic network 424 

analysis, this method has been used to analyze the effect of closing a road (or a 425 

junction) on the overall flow of the network, where the results are sometimes 426 

paradoxical. In [25, 26] it has been shown that by removing some nodes with high 427 

structural power (i.e. high level of expected share of traffic) the overall average flow 428 

(in terms of Kemeny constant) will be better. This phenomenon is known as Braess 429 

paradox [27]. This apparently paradoxical result implies that in order to improve the 430 

overall flow of a network, some times it is better not to add a new node, but to remove 431 

some.  432 

We implemented this procedure to the economic network for all the years from 1995 433 

to 2011, where we calculated the percent of change in the Kemeny constant of the 434 

Markov chain by slowing down the activity of each node by 99%. We manipulated 435 

the transition matrix with the same procedure that we used for the calculation of 436 

systemic influence and systemic fragility. For the year 2011 Fig 8 shows the 437 

relationship between steady state probabilities (i.e. structural power of economic 438 

nodes) and the percent of change in Kemeny constant, caused by the slowdown in the 439 

activity of the node. As we expected, the slowdown of the majority of economic 440 

nodes, leads to higher Kemeny constants (i.e. a slower overall monetary flow across 441 

the network). On the other hand, there are some nodes that the slow downs of their 442 
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activity decrease the Kemeny constant (i.e. a faster overall monetary flow across the 443 

network). 444 

 445 

Fig 8. Effect of slowing downs the activity of economic nodes on Kemeny 446 

constant in 2011  447 

 448 

 449 

In addition, Table 3 shows top 10 economic nodes with the highest positive effects on 450 

Kemeny constant in 2011 along with their corresponding structural power (and their 451 

systemic influences as calculated before. Similar to previous tables, we removed those 452 

nodes related to Rest of World in the following tables. 453 

 454 
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Table 3. Top 10 nodes (except rest of the world) with the highest positive effects 455 

on Kemeny constant in 2011 456 

Rank Names Structural power 
Systemic 

Influence 

% of change in Kemeny 

constant 

1 China-Electrical and Optical Equipment 0.0109195 0.978997 0.637486 

2 Germany-Transport Equipment 0.00282169 0.811653 0.354232 

3 China-Textiles and Textile Products 0.00498553 0.970867 0.2612 

4 Germany-Machinery 0.00183113 0.719512 0.255455 

5 Germany-Electrical and Optical Equipment 0.00154004 0.776423 0.230203 

6 
Germany-Chemicals and Chemical 

Products 0.00110951 0.710027 0.209375 

7 Romania-Government 0.000723924 0.0765583 0.203782 

8 Russia-Government 0.0104454 0.734417 0.202094 

9 USA-Transport Equipment 0.00252037 0.910569 0.191263 

10 
USA-Coke, Refined Petroleum and 

Nuclear 0.00264798 0.469512 0.182051 

 457 

Further, Table 4 shows the top 10 economic nodes with the highest negative effects on 458 

Kemeny constant in 2011 along with their corresponding Eigen centralities and 459 

systemic influences.  460 

Table 4- Top 10 nodes (except rest of the world) with the highest negative effects 461 

on Kemeny constant in 2011 462 

Rank Names 
Structural 

power 

Systemic 

Influence 

% of change in 

Kemeny constant 

1 Brazil-Government 0.0106923 0.99729 -0.448618 

2 Japan-Government 0.0294709 0.995935 -0.28818 

3 India-Government 0.00788957 0.99729 -0.275446 

4 Mexico-Government 0.00473883 0.968835 -0.201355 

5 USA-Government 0.0560428 0.995935 -0.201247 

6 Greece-Government 0.000652282 0.0623306 -0.133354 

7 Finland-Government 0.00127287 0.105014 -0.116016 

8 Spain-Government 0.00610205 0.871951 -0.114455 

9 China-Government 0.0407637 0.998645 -0.111065 
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10 Sweden-Government 0.0030026 0.377371 -0.110952 

 463 

Unlike Table 3, in Table 4 all the top nodes are related to governments, where by 464 

slowing down their activities, one can expect to have a better overall flow in the 465 

network (i.e. smaller Kemeny constant). In order to investigate if there are other nodes 466 

from different sectors than government that will show this paradoxical effect, Table 5 467 

shows the top 10 nodes without governments and rest of the world (ROW), whose 468 

economic slowdowns improve the overall flow of money (i.e. smaller Kemeny 469 

constant). While, comparing to values in Table 4, the percentages of changes in Table 470 

5 are much smaller, it is interesting to note that five out of 10 top nodes belong to the 471 

sector of real estate activities. 472 

 473 

Table 5 - Top 10 nodes (except governments and rest of the world) with the 474 

highest negative effects on Kemeny constant in 2011 475 

Rank Names 
Structural 

power 

Systemic 

Influence 

% of change in 

Kemeny constant 

1 Japan-Real Estate Activities 0.00434353 0.997967 -0.0994393 

2 Brazil-Public Admin and Defense; Compulsory So... 0.00153962 0.0264228 -0.0872356 

3 India-Agriculture, Hunting, Forestry and Fishing 0.00157759 0.0528455 -0.0769576 

4 USA-Real Estate Activities 0.00796444 0.995935 -0.0739146 

5 Australia-Real Estate Activities 0.00132178 0.0121951 -0.0690959 

6 France-Real Estate Activities 0.00190527 0.00880759 -0.0678286 

7 Japan-Public Admin and Defense 0.00371188 0.910569 -0.0646992 

8 Brazil-Real Estate Activities 0.000888012 0.0216802 -0.0593976 

9 Japan-Renting of M&Eq and Other Business Activities 0.00458614 0.988482 -0.0576155 

10 Sweden-Government 0.0030026 0.377371 -0.110952 

 476 

The results shown here are based on world economic network in 2011. However, in 477 

the same way as the previous measures, it is possible to analyze the behavior of these 478 
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measures over time that we leave it to future research. Fig 9 shows that the slowdown 479 

of the activity of economic nodes has most of the times a very little positive effect on 480 

the Kemeny constant of the corresponding year. On the other hand there are few 481 

nodes whose changes have a big impact (either negative or positive) on the overall 482 

flow of the money in the global economic network during the years from 1995 to 483 

2011. It is also interesting to see how the influence of China’s electrical an optical 484 

equipment industry has increased during the last decade, which is presumably because 485 

of expansion of information technology across the world. 486 

 487 

Fig 9. The paradoxical effect of slowdown in the activity economic nodes  (except 488 

rest of the world) on the Kemeny constants 489 

Discussions and Conclusions 490 

Thanks to the recently available World Input Output Database (WIOD), in this work 491 

we modeled the evolution of world economic network from 1995 to 2011 by a series 492 

of finite state Markov chains. As a result, we were able to analyze different aspects of 493 

the underlying dynamical system, by analyzing different properties of the constructed 494 

Markov chains.  495 
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We showed that the ratio between the aggregated steady state probabilities of an 496 

economy to its GDP-share could be considered as a measure of structural potential of 497 

economies for further growth, where the values less than one show a decline in the 498 

speed of growth (economic slowdown) and the values more than one show the 499 

potential for faster economic growth. Further, we claimed that this ratio could be 500 

considered as a risk measure, which is independent of the trend an economy has in 501 

comparison to other economies.  Therefore, there are economies gaining more 502 

structural power with a risky path (i.e. lower structural power than the GDP share) 503 

and vice versa. 504 

In addition, via perturbation analysis of the underlying transition matrices we 505 

introduced two measures of systemic risk, called systemic influence and systemic 506 

fragility, which measure the effect of change in the activity of one node (i.e. an 507 

industrial sector of an economy) on the structural power of all the other nodes in terms 508 

of multitude rather than the magnitude. Further, we showed that the slow down of 509 

activities in different nodes has both negative and positive results in terms of Kemeny 510 

constant, which is a measure of connectivity of the network. This result, which is 511 

paradoxical, needs further investigations. 512 

Finally, we should mention that there are similarities between our work and two 513 

recent works [15,16], where using a bi-partite economy-product network, they come 514 

up with an interesting measure of economic fitness and product complexity. However, 515 

we think our approach based on the Markov chain formalism on input-output tables 516 

has more advantages. We will investigate these relations in our future research. 517 
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Supporting information 578 

All the data sets and codes used to produce the results of this work can be found at 579 

https://sevamoo.github.io/Markovian_IO_SI_PLOSONE/ 580 


